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ABSTRACT

This paper presents a unified formulation for a 3-dimensional finite element based non-linear multi-
body analysis for helicopter rotors. Special multibody brick elements are developed which can be used to
embed arbitrary joint rotations within a 3-dimensional structure. A multi-level iterative substructuring
algorithm, that is parallel and scalable, is redesigned to accommodate multibody components in a manner
that maintains its underlying numerical scalability. The brick multibody formulation is then used to study
the impact of non-linear 3-dimensional hub end effects in rotors that are not modeled by current generation
beam based models. The constraints that arise from a physical 3-D connection of a rotor blade to a joint are
shown to alter the internal stresses at its hub end and impact torsion dynamics significantly – a physics that
is uniquely rotary wing in nature. Large scale structural models are then constructed for a hingeless, an
articulated, and a bearingless rotor, consisting of multiple flexible components and multibody connections
near the hub end, and containing up to 0.48 million degrees of freedom. The models are analyzed for scala-
bility and timing for hover and forward flight solutions on up to 128 processors. The key conclusion is that
multibody components can indeed be incorporated within a fully parallel multi-level iterative substructuring
algorithm without impacting its numerical scalability. And, integrated carefully within 3-dimensional brick
elements, they open new opportunities for capturing fundamental physics of 3-dimensional stress fields on
rotary wing structures.

INTRODUCTION

The objective of this paper is to provide a unified for-
mulation for a 3-dimensional (3-D) brick finite element
method (FEM) based multibody dynamics analysis for
helicopter rotors. Such a formulation requires an inno-
vative method to formulate multibody joint components
within a non-linear 3-D FEM analysis, and an innova-
tive method to accommodate these components within a
fully parallel and scalable solution procedure. This paper
describes the development of both these methods.

This research is targeted towards the development
of a high fidelity, 3-D FEM based, parallel and scalable
Computational Structural Dynamics (CSD) solver for he-
licopter rotors. It is envisioned to be a central compo-
nent of a next generation, High Performance Comput-
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ing (HPC) based, high fidelity rotorcraft analysis [1]. A
research effort was initiated recently by the authors in
Ref. [2] towards the development of such a solver.

The current state of the art in rotorcraft dynamic
analysis incorporates multibody formulations for nonlin-
ear beams [3, 4, 5]. A vast literature exists for multibody
formulations of nonlinear structural elements like beams
and shells. A recent review of the status of current re-
search on such methods can be found in Ref. [6]. Here,
the intent is to devise a formulation that can be inte-
grated with nonlinear 3-D brick finite elements. Only
a limited number of studies can be found on multibody
formulations of 3-D elements [7, 8, 9]. Integration of
multibody dynamics will enable the 3-D rotor analysis
to model realistic hub kinematics while including multi-
ple load bearing 3-D flexible components.

The state-of-the-art in finite element analysis of he-
licopter blades involves a variational-asymptotic reduc-
tion of the 3-D nonlinear elasticity problem into a 2-
D linear cross-section analysis and a 1-D geometrically
exact beam analysis – based on Berdichevsky [10] and
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pioneered by Hodges et al. [11]. Aeroelastic computa-
tions are performed on the beam, followed by a recovery
of the 3-D stress field. The method is efficient and ac-
curate – except near end-edges and discontinuities for
which a 3-D analysis is still needed – as long as the
cross-sectional characteristic dimensions are small com-
pared to the wavelength of deformations along the beam.
Modern hingeless and bearingless rotors contain 3-D flex-
ible components near the hub that have short aspect ra-
tios, open sections, and end constraints, and hence can-
not be treated as beams. The critical couplings that
determine blade dynamics are dominated by these com-
ponents. Critical stresses often occur in these same com-
ponents. Moreover, the treatment of blades, depending
on their advanced geometry and material anisotropy, re-
quire continuous refinements to beam modeling and anal-
ysis to accommodate new physics. The objective of the
present research is to develop a 3-D FEM based rotor dy-
namic analysis that can model generic 3-D components
and dramatically increase the scope of analysis for mod-
ern rotors.

With the emergence of rotorcraft Computational
Fluid Dynamics (CFD), physics-based models contain-
ing millions of grid points carry out Reynolds Aver-
aged Navier-Stokes (RANS) computations on hundreds
of cores, routinely, in a research environment for the ro-
tor, and even for the entire helicopter. Applications to-
day are focused on coupling CFD with relatively sim-
ple engineering-level structural models – carried out on
a single processor while the remaining processors lie idle.
Assessments of the state-of-the-art in loads prediction,
however, make it clear that the progress has mostly been
in airloads, and much less in the accuracy of structural
loads [12, 13]. The intent of this research is to explore
the possibility of using 3-D FEM as the physics-based
counterpart in the structures domain.

There is no question that such a capability will be
powerful. First, it will enable the modeling of critical
couplings that occur in hingeless and bearingless hubs
with advanced flex structures. Second, it will enable the
direct calculation of stresses in these critical load bear-
ing components. Third, it will provide an equal fidelity of
representation of the physics of structures and fluids, un-
like the CFD/CSD simulations of today which are named
so merely for the symmetry of terminology. And finally,
even though this research is targeted towards HPC based
analysis, it will always provide as a by-product a means
(via static analysis) for extracting sectional properties
with which efficient lower order beam analyses can be
carried out when desired. The key questions for such
a capability are, first, whether an efficient solution pro-
cedure can be found that is fully parallel and scalable.
Second, whether multibody dynamics can be integrated
within a non-linear 3-D brick FEM formulation. Third,
whether incorporating multibody dynamics will still re-
tain the efficiency and scalability of the procedure. The
primary focus of the present research has therefore been

on answering these key questions directly.
Initial work documented in Refs. [2] and [14] demon-

strated that a pure 3-D FEM based rotor dynamic analy-
sis (i.e., without multibody dynamics) can indeed be car-
ried out in a fully parallel and scalable manner. An ad-
vanced multi-level iterative substructuring method— the
Dual-Primal Finite Element Tearing and Interconnecting
(FETI-DP) method pioneered by Farhat et al. [15, 16],
was used to develop and study a parallel and scalable
solution of a simple 3-D rotary wing structural dynamics
prototype.

The focus of the present paper is on multibody dy-
namics — its formulation within 3-D FEM, its impact on
the physics of 3-D effects, its accommodation within a
scalable iterative substructuring method, and its impact
on the efficient parallel solution of large scale models of
realistic rotor configurations.

Scope of Present Work

The main emphasis in this work is on the develop-
ment of a special multibody dynamics formulation — one
that can be integrated within 3-D non-linear brick FEM,
and one that can be solved in a fully parallel and scalable
manner. The constraints to be considered are holonomic
in nature – adequate for most advanced rotor configura-
tions. The formulation to be studied is restricted to an
isolated rotor. Advanced modeling like rotating-non ro-
tating interfaces, nonholonomic constraints, and friction
contact, are beyond the scope of this initial work. For the
purposes of solver development, and for the fundamen-
tal understanding of the requirements for advanced level
modeling, simple grid generators, mergers, and partition-
ers are all developed in-house as part of this study. Many
key elements of a comprehensive rotorcraft analysis are
not considered at present: airloads, trim, and extraction
of periodic dynamics are all part of future work.

The paper is organized into four sections. The first
section is on the 3-D FEM multibody analysis develop-
ment. It covers joint formulation, joint modeling, and
physical insights into non-linear 3-D edge effects. The
second section is on the development of parallel and scal-
able solvers for the analysis. The third section describes
the key components of the analysis: geometry and grids,
unique substructuring requirements with multibody dy-
namics, and a description of the hover and forward flight
prototypes. The final section details the scalability and
timings of the 3-D FEM multibody analysis for hover and
forward flight calculations of large scale rotor models.

3-D FEM-MULTIBODY FORMULATION

FEM Formulation

The equations of motion are derived using gener-
alized Hamilton’s Principle governing the motion of a
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coordinates (only edge nodes shown)
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Figure 1: A 27-node isoparametric, hexahedral
brick element; 4× 4× 4 Gauss integration points.

non-conservative system between times t1 and t2∫ t2

t1

(δU − δT − δW ) dt = 0 (1)

where δU , δT , and δW are variation in strain energy,
variation in kinetic energy, and virtual work respectively.
The expressions for each of these are derived in Ref. [2].
The formulation uses Green-Lagrange strains and sec-
ond Piola-Kirchhoff stress measures for strain energy.
The non-linear, geometrically exact implementation fol-
lows the standard Total Lagrangian based incremental
approach [18, 19]. The geometrically exact formulation
is a pre-requisite for the multibody formulation presented
in this paper. The stress-strain material relationship is
assumed to be linear.

The isoparametric, hexahedral, quadratic brick ele-
ment used in this work is as shown in Fig. 1. It consists
of 8 vertex nodes and 19 internal nodes – 12 edge nodes,
6 face nodes, and 1 volume node. The presence of suf-
ficient internal nodes prevents locking. Within isopara-
metric elements, geometry and displacement solution are
both interpolated using the same shape functions. The
shape functions are expressed in element natural coordi-
nates ξ, η, and ζ, where −1 ≤ ξ, η, ζ ≤ 1. We consider
2nd order Lagrange polynomials in each direction.

Ha(ξ, η, ζ) = Ln
I (ξ) L

m
J (η) Lp

K(ζ) (2)

where H is a shape function and a its node point index.
Here n = m = p = 2; and I, J,K are node numbers in
each direction varying as 1, 2, 3 respectively. Based on
the local node ordering shown in Fig. 1(b), we have for
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Figure 2: Blade frequencies vs. normalized rota-
tional speed for a soft in-plane hingeless rotor;
collective 20◦, twist −15◦
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Figure 3: Blade frequencies vs. normalized rota-
tional speed for a fully articulated rotor; collec-
tive 20◦, twist −15◦

example the shape function corresponding to node 11

H11 = L2
2(ξ) L

2
3(η) L

2
1(ζ) =

1

4
η ζ(1− ξ2) (η + 1) (ζ − 1)

The construction of the finite element matrices then fol-
low as given in Ref. [2].

The brick elements are verified using the rotating
frequencies of a slender beam-like geometry of rectangu-
lar cross-section, high aspect ratio, and uniform chord.
The beam has dimensions of 20c×c×c/4 in span, chord,
and thickness directions; a uniform twist of −15◦ about
mid-chord; and is set at a collective pitch angle of 20◦.
The rotation axis is along mid-chord. The material mod-
ulii are E = 8.27 × 107 Pa and G = 3.45 × 107 Pa
(ν = 0.2), density is ρ = 192 kg/m3, and c = 0.0864
m. The discretization uses 16× 4× 2 elements denoting
the number of bricks along span, chord, and thickness,
respectively. The frequency plot for a hingeless blade is

3



shown in Fig. 2, compared with converged second-order
non-linear beam element results (40 elements). The 3-
D boundary conditions are zero deflections at all root
nodes. The rotor speed is normalized with respect to
a baseline value of 27 rad/s. The frequency plot for
a fully articulated blade (5% hinge offset) is shown in
Fig. 3. The articulation is assumed to have zero hinge
stiffness. This boundary condition can be easily repro-
duced by prescribing zero deflections at a single node
at the root end. Implementing non-zero hinge stiffness
require multibody joint modeling in 3-D FEM. This is
because, unlike beams (or structural elements), there are
no rotational states in bricks (or solid elements) on which
to apply rotational stiffness directly.

Frame F

Connection side

Attachment side

A

Joint frame J

P

Joint

Connection

node

Figure 4: A joint formulation connecting multiple
brick elements.

Joint Formulation

A joint connects and constrains the relative motion
of several structural components. One component is con-
sidered the attachment side, the rest are the connection
sides (Fig. 4). A joint is attached to the attachment side
structure at a point A. The inputs to the joint are the
motions of A. The joint variables are displacements uJ

and rotations θJ . The joint is connected to the connec-
tion side structure at an arbitrary number of points P .
In the present method, these connections are realized by
special purpose brick elements, called joint elements. A
joint is formulated as part of these special purpose brick
elements. Any number of nodes of this joint element can
be connected to the joint. At a connection node, the brick
DOFs are reduced to joint DOFs by an exact transfor-
mation. The method is kinematically exact because the
geometry of the brick elements are exact. The motion of
a connection node P relative frame F is related to the
motion of attachment node A relative frame F via joint

motion as follows.

uP = uA + uJ + CFJ l

∆uP = ∆uA +∆uJ +G∆θJ
(3)

The joint displacements are the DOFs uJ = [u, v, w]J .
The joint rotation matrix CFJ (from frame J to F ) is
parameterized in this study by Euler angle DOFs θJ =
[β, ζ, θ]J . l is the undeformed position of a connection
node relative to joint in joint frame. G = ∂CFJ l/∂θJ .
The velocity and accelerations follow from above. The re-
sultant mass, stiffness, damping are non-linear functions
of the joint variables.

Undeformed

Linear
deformation

Non−linear
deformation

Joint with
flap spring

Figure 5: Large rotation about a flap joint.

Joint with
torsion spring

Figure 6: Large rotation about a pitch joint.

The formulation is verified using static deformations
on a stiff beam-like structure for which exact joint rota-
tions can be calculated. Consider a uniform cantilevered
beam of dimensions 20c× c× c, c = 0.0864m, artificially
stiffened E = 8.27 × 1010 N/m2, and with a top surface
pressure of 1 × 103 N/m2. The beam is first discretized
into 8 × 2 × 2 brick elements and then subdivided into
two parts with a joint connection in between. The joint
translations are restrained, the uniform pressure loading
rotates the connection structure only about one axis. For
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a joint stiffness of kβ = 100 N-m/rad, the linear and non-
linear solutions are shown in Fig. 5. The hinge rotations
are identical in both – β = 56.499◦ and 56.507◦ (exact so-
lution) – the main difference is in the deformations of the
brick elements. The nonlinear solution recovers a rigid
body rotation about the flap hinge. The linear frequency,
1.239 Hz, is identical to exact solution

√
kβ/Iβ . With a

joint pitch spring of kθ = 2.5 N-m/rad, and pressure ap-
plied on only the top surface of leading edge bricks, the
nonlinear solution is as shown in Fig. 6. Again, the joint
rotation θ = 40.363◦ and linear frequency 4.337 Hz are
identical to exact solution. The nonlinear solution recov-
ers a rigid body rotation about the torsion hinge.

Joint Modeling

For 3-D non-linear brick elements, joint modeling
must ensure exact representation of a physical connec-
tion. This is dramatically different from the world of
reduced order structural elements (beams and shells)
where a connection is an idealization. This is because
the physics of edge effects are non-existent in reduced
order structural elements, whereas they are inherent in
3-D elements, and joint connections necessarily occur at
the edges.

A joint can connect to any number of brick nodes
on any number of bricks. All of these bricks must then
be formulated as joint elements. The mathematical re-
quirement is that a joint be connected to a minimum of
3 non-colinear nodes in order to transfer all rotations.

Joint
location

Joint
connection

nodes)

Joint brick
elements

Connection
side

structure

Z

Y

X

Figure 7: Joint connected to an entire face of brick
nodes occurring on a section; full face connection.

The simplest joint model (baseline) is a full face con-
nection as shown in Fig. 7. Here all elements on an en-

Joint connection
nodes

Bolt attachments
on blade

Joint
location

Figure 8: Joint connected to a selected set of brick
nodes representing a physical blade attachment;
bolt attachment connection.

tire face of the connection side structure are designated
as joint elements and all nodes that lie on the face (9
nodes per element) as connection nodes. This model was
used in the previous subsection. The formulation, how-
ever, is generic in that the joint elements can be embed-
ded anywhere within a structure and any number of its
nodes designated joint nodes. The joint elements need
not be physically adjacent to a joint. Figure 8 shows an
example of internal nodes of several bricks lying across
the blade thickness connected to a joint. This represents
a realistic bolt attachment type connection and will be
studied in greater detail in the next subsection. A realis-
tic torque tube pitch link connection is shown in Fig. 9.
The joint here is connected to face nodes of several bricks
that make up the torque tube. This model will be used
later to analyze a bearingless rotor hub.

Under static loading, the rotations on the joint (lin-
ear or non-linear) are independent of the joint model.
The end deflections and the internal stresses of the finite
element structure that connects to the joint depend on
the joint model. Under dynamic loading, these internal
stresses govern the non-linear stiffness of the structure.
This non-linearity associated with 3-D end stresses can
have a dramatic impact in rotors because of the enor-
mous centrifugal force field. This effect is described in
the next subsection.

3-D Edge Effects in Rotors

Beam based rotor models with multibody joint con-
nections at the root end neglect 3-D edge effects. This
section demonstrates how this neglect can lead to sig-
nificant discrepancy in torsion dynamics, and how 3-D
models with realistic joint modeling can remedy this dis-
crepancy.
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Pitch link
         joint

      Pitch link
connection points
   to torque tube

Single layer
of
brick
elements

Figure 9: Pitch link connection to torque tube for
a bearingless rotor. Rigid connection from joint
to connection points.

Mode Hingeless Articulated Articulated
No. in pitch

1 0.824 0.000 0.824
2 1.057 0.939 0.939
3 2.763 1.000 1.057
4 5.049 2.601 2.763
5 5.201 3.894 5.049
6 6.419 4.847 5.201
7 8.526 7.927 8.526
8 12.749 10.942 12.734

Table 1: Hingeless, articulated, and pitch-only ar-
ticulated frequencies using beams. Torsion fre-
quencies in bold.

Consider an uniform, untwisted rotor blade, of same
dimensions and material properties that was verified ear-
lier (see FEM formulation). Consider three boundary
conditions, a hingeless, a fully articulated, and a pitch
(only) articulated condition. The rotor frequencies using
beams are given in Table 1. The pitch articulation, as
expected, simply re-places the hingeless torsion frequen-
cies with the articulated ones. The same frequencies cal-
culated using bricks are given in Table 2. In the brick
model, the hingeless and articulated boundary conditions
are straight forward to implement, and are as shown in
Fig. 10. The articulated condition is implemented as
u1 = u2 = u3 = 0 at a single node at the root bound-
ary. This is referred to later as a boundary articulation.
The hingeless and articulated frequencies are identical to
beam frequencies as expected from the earlier verifica-
tion (see Figs. 2 and 3). The pitch articulation, however,
cannot be implemented in a straight forward manner, as
there are no rotation variables in the bricks. The bricks
must now be connected to a revolute joint first at the root
end, and then articulation implemented on the joint vari-

(a) Hingeless;
     Boundary deflections=0
     at all end points.

(b) Articulated;
     Boundary deflection=0
     at a single point.

Z

Y X

Z
Y

X

Figure 10: Hingeless and articulated boundary
conditions.

X

Y

Z

Ω

Figure 11: First torsion mode for an articulated
rotor with zero pitch spring; 0.939/rev.

able. This is referred to later as a joint articulation. The
rotor frequencies for pitch articulation shown in Table 2
uses a full face joint model (as in Fig. 7) to implement
this connection. It is clear that this connection, to a joint
with zero stiffness, does not recover the articulated tor-
sion mode (with natural frequency of 0.939/rev) in bricks
– unlike in beams where a multibody connection is bound
to do so when interfaced with a joint with zero stiffness.

This artificial stiffening of torsion in 3-D is not an
analysis error, but the result of a non-physical connec-
tion to bricks that are naturally equipped to capture the
physics of 3-D end effects exactly. Unlike beam mod-
els, which idealize torsion as a separate variable, in 3-D,
torsion arises naturally from a combination of inplane
and transverse displacements. It will be shown that the
inplane displacements at the edge of a rotor blade are
substantial, and of an unique nature due to the action
of centrifugal forces. By constraining every one of the
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and articulated rotors under pure rotation.

Mode Hingeless Articulated Articulated
No. in pitch

1 0.824 0.000 0.826
2 1.058 0.939 1.058
3 2.768 1.000 2.262
4 5.005 2.606 2.775
5 5.222 3.876 5.059
6 6.686 4.852 5.336
7 8.597 7.954 9.175
8 12.864 10.757 13.265

Table 2: Hingeless, articulated, and pitch-only
articulated frequencies using multibody bricks.
Torsion frequencies in bold.

end nodes to pure rotation, the full face joint model con-
strains these inplane 3-D end displacements, and in turn,
torsion. The remedy is to use a joint model that repre-
sents a true physical connection, and therefore capture
the physics of 3-D end effects precisely. In a true physical
connection, the blade is bolted at the root end to an at-
tachment piece and the attachment piece then connects
to a bearing. The joint represents the bearing, and the
joint model represents the connection provided by the at-
tachment piece. Assuming the attachment piece is rigid
(i.e. stiff), Fig. 8 is an illustration of such a connection.
This is referred to as a bolt attachment model.

To study the 3-D edge effects, the same rotor is
equipped with a grid that is now concentrated towards
the root end. This does not affect the first modes, and
the first three articulated frequencies remain 0, 0.939,
and 1.0/rev – in lag, torsion, and flap. Figure 11 shows
this torsion mode of interest along with the grid. The
torsion frequency equals

√
(I1 + I2)/(I2 − I1), same as

the solution of beam torsion equation

(I1 + I2)ϕ̈+Ω2(I2 − I1)ϕ− (GJϕ′)′ = 0

where I2 and I1 the chordwise and flapwise moments of
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Figure 13: Internal inplane deflections of a hinge-
less rotor under pure rotation.
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Figure 14: Internal inplane deflections of an artic-
ulated rotor; boundary articulation.

inertia and the root boundary condition is that of a free
end, with GJϕ′ = 0.

For both the hingeless and articulated rotors, the
internal transverse deflections (uz) are negligible under
pure rotation. The axial deflections are as in Fig. 12,
with the span-wise variations at several chord stations
plotted in the thickness-wise center plane. (The trends
are similar in all thickness-wise planes.) The variation
along mid-chord reaches zero at the root end, the other
chordwise stations are symmetric about mid-chord. The
variations are identical for the two rotors, with a constant
offset, except at the root end of the articulated rotor.
The axial deflections generate an inplane contraction via
the Poisson’s ratio effect, and these inplane deflections
play a key role in 3-D edge effects. At the edge, these
deflections are of a radically different nature between the
hingeless and articulated rotors, as shown in Figs. 13 and
14 respectively. For over 95% of span, the variations are
identical and exhibit a Poisson’s contraction (positive de-
flection in trailing edge and negative deflection in leading
edge) due to the axial elongation from centrifugal load-
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Figure 15: Root end close-up of internal inplane
deflections of an articulated rotor; boundary ar-
ticulation.

Ω

Joint
location Joint−3D

interface pts

Figure 16: Articulated rotor model using multi-
body bricks; joint model: full face connection.

ing. But at the inboard 5% near the root end, the free
edge of the articulated rotor exhibits a dramatic local
spike with cross-over characteristics. A close up view is
shown in Fig. 15. Only at one node, as prescribed by the
boundary condition, is the deflection zero.

Any blade attachment, regardless of its form, is
bound to provide a constraint on these displacements,
alter the internal stresses, and affect the non-linear tor-
sion frequency. For example, the full face joint model,
implemented as Fig. 16, produces an internal inplane de-
flection field as in Fig. 17, that bears little resemblance to
the articulated rotor and appears closer to the hingeless
boundary condition. The bolt attachment model, imple-
mented as Fig. 18, applies the joint constraints only at
locations where the blade bolts are expected to attach,
and leaves the edge free. Therefore, the inplane deflec-
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Figure 17: Internal inplane deflections of an artic-
ulated rotor; articulation via joint; joint model:
full face connection.

Ω

Joint
location

Joint−3D
interface pts

      Bolt
attachments

Figure 18: Articulated rotor model using multi-
body bricks; joint model: bolt attachment con-
nection.
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Mode Face Bolt Bolt Bolt
No. interface 20%-80%c 30%-70%c 37%-63%c

1 0.826 0.872 0.843 0.789
2 1.058 1.079 1.080 1.079
3 2.262 1.769 1.632 1.446
4 2.775 2.841 2.844 2.841
5 5.059 5.251 5.141 4.957
6 5.336 5.524 5.535 5.525
7 9.175 9.626 9.651 9.626
8 13.265 13.156 13.134 13.073

Table 3: Blade frequencies with revolute joint at
root (pitch); zero joint stiffness; torsion frequen-
cies in bold.
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Figure 19: Internal inplane deflections of an artic-
ulated rotor; articulation via joint; joint model:
bolt attachment connection; bolts at 2.5% R and
20%-80% c.

tions now retain the basic cross-over characteristics of the
articulated rotor (Fig. 19), and consequently the result-
ing frequencies (Table 3) move closer to an articulated
rotor. The table shows the results of bolt attachments at
2.5% R and at three sets of chordwise positions. The de-
flections for the three cases (boundary articulated, a full
face joint, and bolt attachment joint at 2.5% R, 20%-
80% c) are summarized for comparison in Fig. 20. It is
clear that the different edge conditions produce identical
internal deflections over the outboard 95% of the blade
span. Yet, it is the inboard 5%, near the root end that
has an important influence on the torsion frequency. As
to be expected, the span-wise position of the attachment
also matters. This variation is shown in Fig. 21. Clearly,
when the attachment points lie too close to the edge to
be physical, spurious frequencies can result (less than
0.5/rev).

In conclusion, we note that a beam based multibody
model ignores the blade attachment entirely, and conse-
quently neglects all of the 3-D edge effects. By connect-
ing a joint directly to a beam and effectively implement-
ing a boundary condition of the form GJϕ′ = −kθϕ on
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Figure 20: Internal inplane deflections of an ar-
ticulated rotor on leading and trailing edges
compared using: (1) boundary articulation, (2)
joint articulation with full face joint model, and
(3) joint articulation with bolt attachment joint
model.

0 0.02 0.04 0.06 0.08 0.1
0

0.5

1

1.5

2

2.5

3

Spanwise location of bolts, x/R

F
irs

t t
or

si
on

 fr
eq

ue
nc

y,
 /r

ev

 

 

Bolt 20%−80%
Bolt 30%−70%
Bolt 35%−65%

0.94/rev

Figure 21: First torsion frequency vs. spanwise
location of bolt attachment points.

the torsion variable ϕ, it bypasses the dependence of ϕ
on edge effects and ignores the non-linear edge stresses.
From this study, it appears that no realistic connection
can ever reproduce the ideal edge conditions assumed by
beam based multibody models, and the error from this
neglect is a significant one. Finally, it is the high centrifu-
gal forcing that appears to give rise to the non-linear 3-D
edge effects – a phenomena that is unique to rotors.

PARALLEL NEWTON-KRYLOV SOLVERS

The Parallel Newton-Krylov solvers are based on
those originally reported in Refs. [2] and [14]. The main
contribution here is the accommodation of multibody dy-
namics.

Each Newton iteration consists of a fully parallel lin-
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ear solver based on iterative substructuring. In itera-
tive substructuring, the substructure interiors are solved
using direct factorization. This operation is naturally
parallel. The substructure interfaces are solved iter-
atively, using Krylov updates, the building blocks of
which are constructed using fully parallel substructure-
by-substructure operations. The building blocks are: (1)
residual calculation, (2) preconditioning of the residual,
and (3) a matrix-vector multiplication procedure. The
Krylov updates – Conjugate Gradient (CG) updates for
symmetric systems and Generalized Minimum Residual
(GMRES) updates for non-symmetric systems – are con-
structed using these building blocks.

The goal of iterative substructuring is to construct
the building blocks in a scalable manner. This means if
the substructures have an average size H, and the finite
element mesh within each substructure has an average
size h, then the condition number of the preconditioned
interface problem must not grow with the number of sub-
structures as long as the mesh within each substructure is
refined to keep H/h constant. A large problem will then
converge with the same number of Krylov updates (iter-
ation counts) as a small problem. The preconditioner is
then called an ‘optimal preconditioner’ and the solver is
said to exhibit ‘optimal numerical scalability’.

The FETI-DP algorithm is such an iterative sub-
structuring method. It can be constructed to guarantee
optimal numerical scalability for problems governed by
PDEs of up to 4th order and with heterogeneous proper-
ties.

(a) 3 constraints (b) 4 constraints - 1 redundant (c) 6 constraints - 3 redundant

Figure 22: Each figure is a top view of 4 neighboring
substructures; at a dual node common to 4 sub-
structures continuity can be enforced pairwise by
(a) a minimum of 3 constraints across 3 pairs of
substructures, (b) 4 constraints across 4 pairs and
(c) a maximum of 6 constraints across 4 pairs.

The FETI-DP Algorithm

In the FETI-DP algorithm, the substructure inter-
face is sub-divided into two categories: a selected set of
corner nodes and a remaining set of non-corner nodes.
The corner nodes are used to formulate a primal inter-
face problem. Hence they are also termed primal nodes.
The non-corner nodes are used to formulate a dual inter-
face problem. Hence they are also termed dual nodes. In
the primal interface problem, the variables (called primal

(a) 3 constraints

Figure 23: Each figure is a top view of 3 neighboring
substructures; at a dual node common to 3 sub-
structures continuity must be enforced pairwise by
3 constraints across 3 pairs of substructures.

variables) are the original finite element degrees of free-
dom. In the dual interface problem, the variables (called
dual variables) are a set of auxiliary variables, that are
not a direct subset of the original finite element degrees of
freedom. Each dual variable is used to enforce continuity
of the original finite element degrees of freedom across
two substructures. The two interface problems are cou-
pled, and the building blocks of the coupled dual-primal
interface problem can be constructed in a fully parallel
manner requiring communication only between the dual
nodes of neighboring substructure — as long as the pri-
mal nodes are available in all. The primal problem is
therefore solved in every processor and requires a global
communication between all substructures. The primal
nodes or corner nodes are the key to ensuring optimal
numerical scalability. These form a coarse finite element
representation of the problem, and ensure scalability by
propagating local substructure information globally.

Each substructure interface node can be a face, edge,
or a vertex node. A node that is common to two and only
two substructures is a face node. A node that is common
to at least three substructures is an edge node. Of these,
those that occur at the end point of edges are vertex
nodes. The edge and vertex nodes that are common to
more than two substructures can be selected as corner
nodes. This selection was used in our earlier work in
Ref. [2]. This however leads to a large number of coarse
nodes, and because the coarse problem require global
communication, they limit the linear speed-up range for
a given problem size. In this paper, only the vertex nodes
are selected as corner nodes. This is a minimal selection
as it excludes all edge nodes. An illustration is given later
in the section on ‘partitioning and corner selection’.

To implement the minimal coarse problem, the
FETI-DP solver must now treat all substructure edge
nodes that connect to four substructures as dual nodes,
as in Refs. [21, 22]. Each of these dual nodes must then
be equipped with sufficient dual variables to enforce con-
tinuity of finite element degrees of freedom across, not
two, but four substructures. As illustrated in Fig. 22,
a minimum of three dual variables per nodal degree of
freedom is required for this purpose, each enforcing con-
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tinuity across a single pair of substructures. However, a
maximum of six can be used leading to a set of multiple
redundant dual variables. Unless otherwise mentioned,
all subsequent results will use the full set of six dual vari-
ables.

Subdomain containing
multibody joint

2−D Partition

1−D Partition

Figure 24: Partitioning of an articulated blade like
structure containing an inboard multibody joint.

FETI-DP with Joints

The joint DOFs are treated as internal nodes oc-
curring within a substructure. The intent is to leave
the substructure interfaces, and consequently the numer-
ical scalability of iterative substructuring, unaffected by
multibody dynamics. It also leaves unaffected the in-
vertibility condition of the non-corner subdomain nodes
as long as they are already selected to do so prior to in-
clusion of multibody dynamics. Thus, in the present for-
mulation of the solver, grid generation and partitioning
of the finite element structure remain unconstrained from
the requirement of including multibody components.

The inclusion of multibody components as internal
nodes leaves the FETI-DP algorithm unaffected but re-
quires modification to the nodal ordering and connectiv-
ity of the partitioned subdomain nodes. The substruc-
ture nodes are still re-ordered as internals first (Is), fol-
lowed by the interface dual nodes (Γs

E), and then the
interface primal nodes (Γs

C), where the subscript s de-
notes subdomain quantities, but now the internal nodes
are re-arranged to order the multibody DOFs first fol-
lowed by the rest. Placing the multibody DOFs ahead of
the finite element nodes allows a simple shift in the ex-
isting nodal ordering and connectivity to be sufficient for
including them within the solver. The joint connection
nodes are placed at the end with boundary nodes (Γs

B).
Including multibody nodes as internal nodes, how-

ever, determines the rules based on which the original
finite element structure is partitioned. For illustration,
consider a simple blade like structure containing a joint

Special dual
nodes common to
3 subdomains

Special dual
nodes common to
4 subdomains

Primal interface nodes

1−D Partition

2−D Partition

Subdomain merging
1−D and 2−D partitions

Dual interface nodes

Figure 25: Interface construction of a partitioned
articulated blade like structure containing an in-
board multibody joint.

at an inboard section (Fig. 24). The presence of the joint
prevents a straight forward 2-D partitioning of the entire
structure without leaving the joint on a substructure in-
terface. One alternative is a 1-D partition, but as shown
earlier in Ref. [2], a 2-D partition is fundamentally supe-
rior in terms of efficiency. A simple solution is to carry
out a 1-D partition locally near the joint, while perform-
ing a 2-D partition over the remainder of the blade. An
example is shown in Fig. 24. The partitioning, however,
dictates two changes to the construction of the solver.
First, the subdomains that occur at the junction will
contain dual nodes that must ensure continuity of dis-
placements across an odd number of subdomains (3 in
this case). Second, the primal node selection must be
consistent across the two partitions. The first change
implies that the subdomain that lies on the 1-D side of
the junction will now contain special dual nodes that are
to be equipped with multiple dual variables but are no
longer geometric edges. The second change implies that
it will now contain primal nodes that are not geometric
vertices. Based on these rules, the interface construction
is as shown in Fig. 25.

In order to compare scalability, the same beam, the
same partition (as in Fig. 24), and the same algorith-
mic construction (as in Fig. 25) is used on two candidate
structures – one in which a multibody joint is introduced
at an inboard section and another in which it is not. The
multibody joint model is chosen to be a full face model
so as to introduce maximum discrepancy in the band-
width and conditioning of the internal nodes between
the two candidate structures. The convergence rate of
the domain decomposition solver remains identical for
both structures, as shown in Fig. 26. Both converge with
nominally the same iteration count demonstrating that

11



0 10 20 30 40 50 60 70 80
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Subdomain Iterations

F
ul

l r
es

id
ua

l |
|b

−
A

x|
| 2/||

b|
| 2

 

 

With joint
Without joint

Figure 26: Convergence of FETI-DP/CG solver
with and without multibody dynamics; articu-
lated rotor.

Torque tube

Main blade

flexelement

Pitch link joint

Joint connection
nodes on torque tube

Ω

Figure 27: Illustration of a bearingless blade like
structure containing an inboard multibody joint.

the condition number of the preconditioned interface has
not been altered. This implies that if the original prob-
lem was scalable then the new problem with multibody
dynamics remains scalable.

Next consider a simple prototype of a bearingless ro-
tor, Fig. 27. The details of geometry and grid are given
in the next section. A simple 1-D partitioning is carried
out that ensures the pitch link joint is embedded entirely
within the root substructure, see Fig. 28. Although 1-D,
care is taken to avoid choosing a large number of cor-
ner nodes – a major drawback of a 1-D partitioning as
presented in Ref. [2] – as only a few edge nodes are se-
lected as corners (see subfigure in Fig. 28). The number
of coarse nodes here are then exactly same as a 2-D parti-
tion. Again, two structures are considered, one in which
the pitch link joint occurs as shown in the figure, and
another without. Figure 29 shows that the rate of con-
vergence is again similar, demonstrating the equivalence
in the condition number of the preconditioned interface,
and hence implying the same scalability.

Subdomain with
 pitch link joint connection

1−D Partition

Typical subdomain

Corner nodes

Figure 28: Partitioning and interface construction
of a bearingless blade like structure containing an
inboard multibody joint.
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Figure 29: Convergence of FETI-DP/CG solver
with and without multibody dynamics; bearing-
less rotor.

In summary, including multibody dynamics within
the domain decomposition solver sets important rules for
partitioning the finite element structure. These rules in
turn impact the algorithmic construction of the underly-
ing parallel solver. However, ones the rules are followed,
the present method of including multibody dynamics
leaves the subdomain interfaces, and consequently the
scalability, of the domain decomposition solver funda-
mentally unchanged.

Parallel CG and GMRES Updates

In addition to the communication required by FETI-
DP in constructing the building blocks, the CG and GM-
RES updates require additional processor synchroniza-
tion points of their own. These must be minimized to
prevent high communication costs diminishing scalabil-
ity of the parallel implementation regardless of the nu-
merical scalability of the underlying algorithm.
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A Conjugate Gradient (CG) update requires three
processor synchronization points – vector inner products
that require global communication including a norm cal-
culation to determine the stopping criteria. The total
number can be reduced to just one using advanced norm
estimation techniques [23, 24]. This has not been in-
cluded at present. The requirement is more severe for
the GMRES update and is more relevant to rotary wing
structures due to its non-symmetric nature.

A Generalized Minimum Residual (GMRES) up-
date incurs significantly more communication cost than
a CG update. At the heart of a GMRES update is the
Arnoldi algorithm. To solve Ax = b, it constructs m
orthonormal basis vectors Vm = [v1, v2, . . . , vm] span-
ning the m-dimensional Krylov subspace Km(A, r0) =
span(r0, Ar0, . . . , A

m−1r0), where r0 = b−Ax0 and x0 is
the current estimate of the solution, and a matrix H̄m of
size (m+1)×m the top m×m block of which is an upper
Hessenberg matrix Hm. The construction of each vector
requires orthogonalization with respect to every one of
the previous. Traditionally, a Modified Gram-Schmidt
procedure is preferred for this orthogonalization step
because of its numerical stability over Classical Gram-
Schmidt. However it requires as many as m synchro-
nization points compared to only one in Classical Gram-
Schmidt. In this study we implement a Reorthogonalized
Classical Gram-Schmidt procedure that produces orthog-
onalization superior to Modified Gram-Schmidt while re-
quiring only two synchronization points [25, 26].

COMPONENTS OF MULTIBODY-FEM
ANALYSIS

R = 15 c

0.05 R
0.1 R 0.1 R

Figure 30: Planform of a prototype rotor blade
used in this study; c = 0.53 m.

3-D Geometry and Grids

Geometry and grids are critical components of a 3-D
rotor analysis, but are not the present focus of this work.
It is assumed that suitable geometry and grid generators
will be available to the solver from other sources. Yet,
for the purposes of solver development, and for under-
standing the solver requirements for a multibody based
3-D FEM analysis, a simple grid generator, a component
merger, and a joint locator are developed.

The grid generator can discretize only one contin-
uous structure at a time and assumes that the cross-
sectional discretization remain same along span. Within

Part 1      Flexelement
Part 2      Torque tube
Part 3      Main blade

Flexelement

Torque tube /control cuff
with pitch link
connection

Blade attachment section;
Conformal element mesh
across part boundaries

Main blade

Pitch link
   joint

Figure 31: Components of a hingeless-bearingless
rotor blade.

this assumption, it is easy to accommodate arbitrary air-
foil shapes, twist, planform, and advanced geometry tips.
The structure can be solid or shell-like with several lay-
ers of bricks. Different element groups can be prescribed
different material properties (e.g. spar, skin, and honey-
comb). The component merger can merge two or more
gridded structures but assumes the same grid resolution
at the connection interface. The merger conforms ge-
ometry as well as nodal connectivities at the interface.
The joint locator identifies the multibody joint connec-
tion nodes and adds them to boundary nodes for elimi-
nation.

Grid n1 × n2 × n3 DOFs

Small scale
Hingeless 1 96× 4× 2 25,920
Hingeless 2 48× 4× 4 25,920
Hingeless 3 64× 4× 4 34,560
Large scale
Hingeless 128× 12× 12 480,000
Articulated 128× 12× 12 480,000
Bearingless 127× 12× 12 + 136 482,271

Table 4: 3-D FEM hingeless rotor grids for scala-
bility study.

Three prototype rotor blades are considered: (1)
a hingeless blade, (2) an articulated blade with coinci-
dent flap-lag-torsion hinge, and (3) a bearingless blade.
The hingeless blade is a single component structure. The
articulated and bearingless blades are multibody struc-
tures.

The nominal blade geometry is shown in Fig. 30.
It contains a generic symmetric airfoil of 5% thickness
at every radial station. The planform is generic with a
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Figure 32: A hingeless rotor blade prototype with
128 × 12 × 12 elements (every 3 span stations
shown); 0.48 M FEM degrees of freedom

Figure 33: Cross-section of prototype blade show-
ing 12×12 bricks with 625 nodes; exaggerated ver-
tical scale.

sweep of 20◦ outboard from 95% span station. The ar-
ticulated blade has an identical geometry, except for a
spherical joint located at 5% R to provide articulation.
The bearingless blade contains multiple flexible compo-
nents at the root end as illustrated in Fig. 31 along with
a pitch link connection to the torque tube on the retreat-
ing side. The joint allows vertical, inplane, and pitching
motion while constraining all others.

Each finite element can accommodate its own ma-
terial model and ply direction but for the purposes of
scalability and timing simple isotropic properties suffice:
E = 73 GPa; ν = 0.3; and ρ = 2700 kg/m3. The rota-
tional speed is a steady Ω = 27 rad/s. With c = 0.53
m, these values generate typical stiffness and inertia of
soft in-plane rotors for the hingeless blade. No attempt
is made to place the sectional offsets at quarter-chord for
any of the configurations.

The simple geometry of the hingeless blade is ide-
ally suited for scalability study as it can be partitioned
uniformly into many substructures containing the same
number of elements. The numerical scalability of the
solver can then be examined without the practical con-
straints of load balancing. We consider three small scale
problems for the scalability study and three large scale
problems for timing study as listed in Table 4. n1, n2,

Spherical joint provides
concident flap−lag−torsion
articulation

Deflections=0
at root
attachment end

Figure 34: An articulated rotor blade prototype
with 128× 12× 12 elements (every 3 span stations
shown); 0.48 M FEM degrees of freedom, with
coincident flap, lag, torsion articulation at 5% R

and n3 are numbers of elements along span, chord, and
thickness. By small scale, we mean sizes that can also be
analyzed on a single processor for a consistent compari-
son of parallel speed-up.

For practical applications, not just scalability, but
the actual run times are of prime importance. The large
scale problems are designed for this purpose. The in-
crease in problem size is achieved primarily by increase
in cross sectional resolution. The largest problem size for
the hingeless rotor consists of 0.48 million (M) DOFs. For
this size, the discretized blade and the cross section are
shown in Figs. 32 and 33 respectively.

The articulated and bearingless rotors considered
are both large scale problems. The presence of multi-
body components in both calls for special partitioning
and load balancing. The articulated blade contains the
same number of DOFs as the hingeless blade with the
addition of 6 joint DOFs. The bearingless rotor contains
482, 271 DOFs out of which 1, 326 are in the torque tube
including the 6 joint DOFs and 585 DOFs are in the
flex-element. The discretized configurations are shown
in Figs. 34 and 35.

Partitioning and Corner Selection

The inclusion of multibody dynamics require that
partitioning be carried out satisfying two criteria. First,
that the multibody components are entirely embedded
inside substructures, i.e., both the joint attachment node
as well as all the joint connection nodes are part of bricks
that are contained within the same substructure. Second,
that the total DOFs are still evenly distributed across
substructures. Once these criteria are met, the parti-
tioner then performs the three tasks: (1) re-orders sub-
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Hingeless b.c.
on flexelement

Torque tube
connection to multibody
joint provide multiple
load paths

12 c

3 c

Figure 35: A hingeless-bearingless rotor blade pro-
totype; a total of 0.48 M FEM degrees of freedom
for entire structure, with pitch link articulation.

Blade partitioned into
   8x2 substructures

Figure 36: 3-D FEM of a hingeless rotor blade us-
ing isoparametric brick elements; blade partitioned
into 8× 2 substructures for illustration.

1−D Partition

2−D Partition

Subdomain
containing
multibody

DOFs

Blade partitioned into
2x1 + 7x2 = 16 substructures

Figure 37: Blade partitioned into a combination of 1-
D and 2-D partitions; 2×1+7×2 = 16 substructures
shown for illustration.

Subdomain containing
flexelement, torque tube,

and multibody DOFs

Blade partitioned into
16x1 substructures

Figure 38: A bearingless blade partitioned into 16×1
substructures shown for illustration.
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Coarse nodes

Figure 39: A typical substructure showing baseline
coarse problem selection; circles are dual interface
nodes, squares are primal coarse nodes.

Coarse nodes

Figure 40: A typical substructure showing minimal
coarse problem selection; circles are dual interface
nodes, squares are primal coarse nodes.

structure nodes and element connectivity, (2) selects cor-
ner nodes, and (3) constructs substructure to substruc-
ture communication maps.

The node re-ordering brings the interior nodes first,
followed by interface nodes, and then the boundary
nodes. Among interior nodes, the multibody DOFs are
arranged first, followed by the finite element nodes. The
boundary nodes are augmented with the joint connec-
tion nodes. The interface nodes consist of face, edge,
and vertex nodes. These are then separated into corner
and non-corner nodes for treatment as primal and dual
interface nodes respectively. All dual interface nodes that
occur at the edges are identified as special and equipped
with multiple dual variables as required.

For the hingeless blade, a typical partitioning is illus-
trated in Figure 36. Selection of corner nodes is the most
important requirement and must be performed in an in-
telligent manner. First, the selection must ensure null
kernels in every substructure, i.e. constrain rigid body
motion by ensuring that the non-corner restriction of the
stiffness matrix is invertible. Second, it must be as small
as possible, enough just to provide global error propaga-
tion but no larger. A selection containing all of the edge
and vertex nodes common to more than two substruc-
tures (see Fig. 39) was used in our previous study [2] and
is referred to in this paper as the baseline coarse prob-

Corner nodes

Special dual nodes
common to
3 subdomains

Figure 41: Substructure merging 1-D and 2-D parti-
tioned domains showing coarse problem selection;
circles are dual interface nodes, squares are primal
coarse nodes.

Corner nodes

Figure 42: A typical substructure of a bearingless
rotor; circles are dual interface nodes, squares are
primal coarse nodes.

lem. The selection studied in this paper contains only a
subset of these corner nodes, and consists only of the ver-
tex nodes that lie at the end of the edges (see Fig. 40).
This is referred to as the minimal coarse problem. Its
size is now independent of the cross sectional grid and is
at the most 8 per substructure. Note that the vertices
that occur at the boundaries of the structure must also
be included, even though they are common to only two
substructures, to satisfy the first criteria of null kernels.
Otherwise, the substructures at the tip end will contain
rigid body rotational modes making them non-invertible.

For the articulated blade, a typical partitioning is a
combination of 1-D and 2-D partitions as illustrated in
Fig. 37. The combined 1-D and 2-D partitioning for the
articulated blades generates similar substructures on the
2-D side. The substructures on the 1-D side, however,
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require a different selection of the coarse problem. This
selection is determined by the coarse problem of the sub-
structure at the junction. Here, the coarse problem must
maintain consistency with the 2-D partitions, as shown
in Fig. 41. The coarse problem on the 1-D partitions
then follows from the junction substructure.

For the bearingless blade, a typical partitioning is a
1-D partition as shown in Fig. 38. The 1-D partitioning
generates typical subdomains as shown in Fig. 42. Note
that the coarse selection here is superior to the 1-D parti-
tioning originally shown in Ref. [2]. The coarse problem
here is selected in the same manner as that of the 1-D
partitions on the inboard sections of the articulated ro-
tor.

The substructure to substructure connectivity needs
to be calculated only once. Each substructure creates a
destination and a reception map. The former contains
the substructures to which quantities are to be sent, and
the corresponding destination node numbers. The latter
contains the substructures from which quantities are to
be received, and the corresponding recipient node num-
bers. The dual nodes that lie on the edges communi-
cate with four neighboring substructures. The dual nodes
that lie on the faces communicate only with two neigh-
boring substructures.

Hover and Forward Flight Prototypes

The hover prototype simply solves for steady blade
response at a fixed collective of 10◦ with pressure airloads
of 100 N/m2 (418 lb/ft radial distribution) on the top sur-
face. The airloads have the non-linear characteristics of
a follower force. The non-linear solution procedure uses
Newton-Raphson outer iterations. Within each iteration,
the implicit FETI-DP inner solver uses CG updates. A
CG update is adequate in ideal hover as the stiffness
matrix is symmetric. The initial iterations converge the
structural non-linearities associated with rotation. Once
converged, the airloads are imposed. The virtual work
during each airload iteration is calculated based on the
previous iteration deformation state.

The transient forward flight prototype uses a New-
mark scheme with a 5◦ azimuth step. The dynamic stiff-
ness is now non-symmetric, therefore, the inner Krylov
solver uses a GMRES update. For purposes of scalability
study, the response for a single time step suffices, as the
structure of the dynamic stiffness matrix remains same
for all. We consider the following dimensions of Krylov
subspace: m = 30, 40, and 50, deemed more than ade-
quate for large scale problems. Note that increasing m
improves efficiency (faster convergence) at the cost of re-
duced scalability (greater communication).

SCALABILITY AND TIMING OF 3-D
ROTOR ANALYSIS

The scalability study is carried out on the hingeless
rotor with small scale problem sizes. The hingeless rotor
can be partitioned into a large number of substructures
without load imbalance. The small scale problems can
also be analyzed on a single processor (without memory
overflow) allowing the calculation of parallel speed-up.
Once scalability is established, the timing study is then
carried out for all of the three rotors of large scale prob-
lem size. Note that it has already been shown that the
scalability of the solver remains same with or without
multibody dynamics. The main effect of multibody dy-
namics is to set new rules for partitioning within which
load balancing must be carried out carefully. For the
articulated and bearingless rotors, the substructures are
specially partitioned to confirm to these requirements.

Scalability Study

First, the study is conducted on a local unix cluster
of 2.2 GHz dual core AMD Opteron processors. This to
compare present results consistently with those reported
earlier in Ref. [2]. Subsequently all computations are
carried out on an Army DoD Supercomputing Resource
Center (DSRC) cluster of 3.0 GHz dual core Intel Wood-
crest processors. All times are wall clock times.

Consider the hingeless rotor of size 48× 4× 4, par-
titioned into ns = 8 × 2 = 16 substructures (as in
Fig. 36). The FETI-DP/CG (single Newton iteration in
hover) solver times on a single processor for the baseline
and minimal coarse problem implementations are com-
pared in Fig. 43. It is clear that the optimal number of
substructures — number of substructures for which the
solver time is minimum — is extended by the minimal
coarse problem. For the problem of size 48 × 4 × 4 the
baseline coarse node selection (as in Fig. 39) produces
an optimality at 24 substructures whereas the minimal
coarse node selection (as in Fig. 40) produces an opti-
mality at 48 or more substructures. Similarly, for the
problem of size 96 × 4 × 2, the optimality is extended
from 32 to 64 substructures.

ns FE Sub. Coarse FETI Solver
LU problem total

8 198 453 125 517 1099
12 197 257 101 398 758
16 193 174 99 334 611
24 191 101 149 258 510
32 190 67 279 222 569
48 190 35 866 186 1088

Table 5: Solver time (s) vs. number of substruc-
tures ns with baseline coarse problem; single pro-
cessor; 48× 4× 4 elements.

The reason behind this extension is clear from the
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Figure 43: Solver time (s) vs. number of sub-
structures for calculations on a single processor;
48× 4× 4 elements; hover.
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Figure 44: Solver time (s) vs. number of sub-
structures for calculations on a single processor;
96× 4× 2 elements; hover.
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Figure 45: Parallel speed-up for calculations on
multiple processors; each substructure on each
processor; 48× 4× 4 elements; hover.
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Figure 46: Parallel speed-up for calculations on
multiple processors; each substructure on each
processor; 96× 4× 4 elements; hover.
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Figure 47: Solver time (s) vs. number of substruc-
tures for calculations on a single processor; three
problem sizes; hover.
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Figure 48: Parallel speed-up for calculations on
multiple processors; three problem sizes; each
substructure on each processor; hover.
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Figure 49: Solver time (s) vs. number of substruc-
tures for calculations on a single processor; three
problem sizes; forward flight.
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Figure 50: Parallel speed-up for calculations on
multiple processors; three problem sizes; each
substructure on each processor; forward flight.
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ns FE Sub. Coarse FETI Solver
LU problem total

8 198 496 32 601 1134
12 198 290 23 479 796
16 193 204 19 438 664
24 192 124 15 346 487
32 191 86 14 297 400
48 191 51 20 260 333
96 190 20 94 546 662

Table 6: Solver time (s) vs. number of substruc-
tures ns with minimal coarse problem; single pro-
cessor; 48× 4× 4 elements.

detailed break-up of solver timings for the baseline and
the minimal coarse problem implementations and are
given in Tables 5 and 6. In the tables, ‘FE’ refers
to the time taken to construct the structural matrices.
‘Solver total’ refers to the total solver time. The two
together constitute the total simulation time. ‘Solver to-
tal’ consists of three parts: (1) ‘Substructure LU’ time,
which refers to the substructure factorization, (2) ‘Coarse
problem’ time, which refers to the coarse problem fac-
torization, and (3) the ‘FETI-DP’ time, refers to the
Krylov solver time including residual, preconditioner,
and matrix-vector multiplies. The tables show that the
dramatic reduction in coarse problem time and the delay
in its growth leads to a significantly higher substructure
optimality for the same problem size. This has important
ramifications for scalability and timings for the parallel
implementation.

The parallel implementation solves each substruc-
ture on a separate processor. To calculate parallel speed-
up, the parallel solver time is compared with the serial
solver time with the same number of substructures as
the parallel solver. This ensures that computations of
the same complexity are compared and that the speed-up
is not contaminated with the benefits of substructuring
itself.

The parallel speed-up for the two problems are
shown in Figs. 45 and 46. In each figure, the speed-up
obtained from the two coarse node selections are com-
pared. It is clear that the minimal coarse node selection
extends the linear speed-up range to a greater number of
processors. Thus, for a given problem size, the minimal
selection enables the fastest parallel solver time. From
Fig. 45, the problem of size 48 × 4 × 4 that could be
solved in 21s using 24 processors, but no faster, can now
be solved in 7s using 48 processors. The detailed break-
up of the parallel solver times is given in Table 7.

Similarly, from Fig. 46, the problem of size 96×4×2
that could be solved in 11s is now solved in 6s. How-
ever, for this problem the optimality is not yet reached
with the available 48 processors. In order to study the
full scalability range, all calculations are re-performed on
the DSRC cluster, where more processors are available.

np FE Sub. Coarse FETI Solver
LU problem total

8 24 66 4.18 67 137
12 16 26 1.97 34 62
16 12 13 1.19 21 35
24 8.2 5.5 0.68 11 18
32 6.1 2.9 0.54 7.6 11
48 4.2 1.2 0.69 5.2 7

Table 7: Solver time (s) vs. number of proces-
sors np with minimal coarse problem; 48 × 4 × 4
elements.

Henceforth, all studies are conducted on this platform.
Figures 47 and 48 show the single processor timings and
parallel speed-up respectively of the same problems. An
additional problem of size 64× 4× 4 elements is consid-
ered which could be partitioned into 128 substructures
and analyzed on 128 processors. Even though the actual
timings are significantly superior on this platform (5–10
times faster), the conclusions on scalability remain the
same. The two problems of sizes 96×4×2 and 64×4×4
elements that have optimality of 64 show linear speed-up
up to 64 processors, the problem of size 48 × 4 × 4 that
has optimality of 48 shows linear speed-up up to 48 pro-
cessors. The solver times for serial and parallel compu-
tations for the problem of size 64×4×4 are documented
in Tables 8 and 9 respectively.

np FE Sub. Coarse FETI Solver
LU problem total

8 30 79 9.7 298 388
16 24 30 5.2 199 234
32 23 12 3.0 139 154
64 21 5.3 6.8 124 136
128 21 2.7 65.5 349 418

Table 8: Solver time (s) vs. number of substruc-
tures ns with minimal coarse problem; 64 × 4 × 4
elements.

np FE Sub. Coarse FETI Solver
LU problem total

8 2.5 11.95 1.63 40 53.4
16 1.1 1.59 0.48 12 14.4
32 0.55 0.33 0.16 4 4.52
64 0.27 0.08 0.16 1.8 2.04
128 0.16 0.02 0.78 3.4 4.23

Table 9: Solver time (s) vs. number of proces-
sors np with minimal coarse problem; 64 × 4 × 4
elements.

The conclusions drawn on substructure optimality
and parallel speed-up using the FETI-DP/CG solver is
carried over to the FETI-DP/GMRES solver. Figures 49
and 50 show the single processor timings (single Newton
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iteration of a single time step in forward flight) and paral-
lel speed-up respectively. For these results, the GMRES
solver uses a restart parameter ofm = 30, and a Classical
Gram-Schmidt with Re-orthogonalization based Arnoldi
algorithm (see Ref. [2]). The actual timings are lower
because the convergence criteria is set to 10−8, as com-
pared to 10−12 for the CG, due to the oscillatory nature
of residual convergence beyond this value.

Timing Study for Large Scale Problems

It was demonstrated in the last section that the
implicit parallel solvers developed using the FETI-DP
method of iterative substructuring can solve hover and
forward flight response in a scalable manner. For exam-
ple, each Newton iteration of a 34, 560 DOFs problem
could be solved 64 times faster on 64 processors than on
a single processor. For the solution of large scale prob-
lems, not just scalability but actual solver timings are of
equal importance. By extending substructure optimal-
ity and linear speed-up to as high a processor number
as possible, the minimal coarse problem now enables the
benchmarking of actual solver timings on the three large
scale rotor prototypes.

Each of the prototypes contain around 0.48 M
DOFs. The main blade contains a cross-sectional res-
olution of 12 × 12 second order elements with a total of
25 × 25 nodes. The FETI convergence criteria for all
cases are set to 10−6 for the preconditioned residual –
more than adequate as the absolute residuals are always
lower than this value.

For the hingeless rotor, the blade is discretized into
64 × 2 = 128 substructures and analyzed on 128 pro-
cessors. Even though the substructure optimality of this
model is expected to be far greater than this number, the
partitioner is limited at present to spanwise and chord-
wise partitions, with no partitioning across thickness. At
this level of decomposition, each substructure contains
two layers of bricks each. The solver times for a sin-
gle Newton iteration is shown in Table 10. The FETI-
DP/CG solver is used on the symmetric stiffness matrix
corresponding to hover. The FETI-DP/GMRES solver is
used on the non-symmetric stiffness matrix correspond-
ing to a single time step of implicit Newmark for transient
forward flight. The forward flight cases converge faster
because the mass matrix improves the condition number
of the dynamic stiffness matrix leading to lesser number
of iterations. The iteration count can be reduced further
by using a greater value of restart parameter m. The
consequent increase in communication, however, does not
appear to incur a penalty as the solver time follows the
same trend as iteration count. Henceforthm = 40 is used
as baseline.

The number of dual variables per edge corner (nλ)
has an important effect on solver time. Four variables
per edge corner (nλ = 4) is considered baseline in this
study. The variation from a minimum of 3 to a maxi-

Solver FE Sub. Coarse FETI Solver Iter.
type LU problem total

CG 2.9 35.4 3.14 220 258 509
GM30 2.9 35.9 3.15 142 180 325
GM40 2.9 35.5 3.14 135 173 309
GM50 2.9 35.4 3.14 130 168 296

Table 10: Solver times (s) for FETI-DP/CG and
FETI-DP/GMRES (m = 30, 40, 50) prototypes;
analysis of 0.48 M hingeless model on 128 pro-
cessors, each substructure on each processor.

mum of 6 is shown in Table 11. In general, increase in
number of dual variables leads to faster convergence but
at a greater communication cost. From Table 11 however
communication cost is not a concern — iteration count
and solver times both show the same trends. It is clear
that more than 3 is desired and 4 is close to optimal –
hence chosen as baseline. 5 is not preferred as one out
of the two cross directions (see Fig. 22) must be picked
arbitrarily.

Dual variable GM30 GM40 GM50
per edge corner

3 252 (489) 225 (428) 220 (416)
4 180 (325) 173 (309) 167 (296)
5 183 (327) 159 (274) 164 (285)
6 202 (366) 183 (327) 179 (314)

Table 11: Solver times (s) and iteration count (in
brackets) vs. number of dual variables per edge
corner; FETI-DP/GMRES with m = 30, 40, 50,
analysis of 0.48 M model on 128 processors, each
substructure on each processor.

For the bearingless rotor, the structure is partitioned
into a total of 1×64 substructures. The first substructure
from the root end contains a total of 2×4×6 = 48 bricks
on the flex-element, 88 bricks on the torque tube, and
144 bricks on the main blade – a total of 276 bricks. The
remaining substructures contain 288 bricks each. This
is the closest load balancing that can be achieved with
the present partitioner. That the same problem size can
only be partitioned now into half the number of sub-
structures is due to the presence of multibody dynam-
ics. However, the problem stems not from multibody
dynamics, but from the lack of effective partitioning at
present. An effective partitioner is one that will decom-
pose each of the root components separately. The only
requirement then would be that the multibody compo-
nents be placed entirely within one of the torque tube
substructures. The solver times for three loading cases
are shown in Table 12. Apart from hover and forward
flight a non-rotating static condition is also shown (with
pressure loading reduced to 0.1 N/m2). Iterative solvers
have problem dependent convergence. In general, the
non-rotating case has the fastest convergence. Introduc-
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ing rotation introduces stiffness which increases conver-
gence time. The dynamic stiffness with inertial terms in
general converges faster for reasons given above.

Analysis FE Sub. Coarse FETI Solver
type LU problem total

Static loading 5.6 202 6.7 102 310
Hover 5.7 204 7.3 302 513

Forward flight 5.7 204 7.3 235 447

Table 12: Solver times (s) for FETI-DP/CG and
FETI-DP/GMRES (m = 40) prototypes; analy-
sis of 0.48 M bearingless model on 64 processors,
each substructure on each processor.

For the articulated rotor, the structure is partitioned
into a total of (1× 4)+ (2× 30) = 64 substructures. The
first 4 from the root end are part of 1-D partitioning.
Each contain 2× 12 × 12 = 288 bricks. The fourth sub-
structure carries the multibody joint (at 5% R). It is
also the connecting substructure to the rest of the blade
which is partitioned using 2-D partitioning. Each sub-
structure here contains 4 × 12 × 6 = 288 bricks. Thus,
the substructures are all load balanced – except for the
fourth which contains 3 additional DOFs, a difference of
no consequence. The solver times for three loading cases
are shown in Table 13. For the articulated rotor, the
convergence times show a different trend. All three load-
ing conditions show similar time for convergence, and in
general converges faster compared to the hingeless and
bearingless rotors. This is because of the hinge. The
stiffness of the structure is now determined primarily by
the hinge articulation that makes it less stiffer than the
other configurations.

Analysis FE Sub. Coarse FETI Solver
type LU problem total

Static loading 5.6 189 6.4 116 312
Hover 5.6 188 6.3 115 310

Forward flight 5.6 186 6.2 125 317

Table 13: Solver times (s) for FETI-DP/CG and
FETI-DP/GMRES (m = 40) prototypes; analy-
sis of 0.48 M articulated model on 64 processors,
each substructure on each processor.

The variation of solver time with number of proces-
sors cannot be compared fairly across different problem
types, but it is clear that use of 64 processors over 128,
approximately doubles the solution time. The compar-
ison is somewhat meaningful between the hingeless and
bearingless rotors as their boundary conditions are more
similar to each other as compared to the articulated ro-
tor. The bearingless rotor on 64 processors require 513
s (hover) and 447 s (forward flight) compared to 258 s
(hover) and 173 s (forward flight) for the hingeless rotor
on twice the number of processors — a factor of 2 and
2.6 respectively.

CONCLUDING OBSERVATIONS

The main objective of this paper was to provide
a unified formulation for including multibody dynamics
within a 3-D FEM based nonlinear finite element anal-
ysis for rotors and to devise and demonstrate a paral-
lel solution procedure that accommodates multibody dy-
namics while maintaining scalability. To this end, spe-
cial multibody brick elements were formulated in this
study. The fundamental importance of precise joint mod-
eling in connection with non-linear 3-D finite elements
was highlighted. The physics of non-linear edge effects
that that require 3-D modeling was investigated. Then,
a method to accommodate multibody degrees of freedom
within fully parallel Newton Krylov iterative substruc-
turing solvers was devised. It was demonstrated that the
method leaves the numerical scalability of the original al-
gorithm un-affected. Finally, three large scale prototype
rotor configurations – one hingeless, one fully articulated,
and one bearingless, containing up to 0.48 M DOFs and
multibody hub components – were studied using the 3-D
FEM multibody analysis, on up to 128 processors, for
both hover and forward flight type calculations. Based
on this study, the following key conclusions are drawn.

1. An unified 3-D FEM multibody dynamic analysis
for rotor can indeed be carried out in a fully parallel
and scalable manner – both in hover and forward
flight.

2. An iterative substructuring algorithm that is scal-
able for pure finite element structural analysis can
easily be tailored to accommodate multibody dy-
namics and still retain its scalability, as long as the
multibody components are embedded wholly within
substructures, leaving the interfaces free.

3. The above requirement, however, sets secondary
rules on partitioning that calls for changes to the
construction of the solver. In addition, it calls for a
good partitioner for efficiently solving the problem
on a large number of processors.

4. 3-D brick elements in connection with multibody
modeling open opportunity to predictions of non-
linear 3-D edge effects — so far unmodeled by cur-
rent generation beam based dynamic analysis. This
is a non-linear phenomena that is unique to rotors
and appears to have a strong influence on torsion dy-
namics. It also highlights the need for precise mod-
eling of joints to avoid spurious results.

5. Realistic rotor geometries containing up to half a
million 3-D FEM multibody degrees of freedom can
be solved in around 250 s – 500 s on 128 – 64 pro-
cessors for a single Newton iteration of prescribed
aerodynamic forcing.
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Outlook and Future Research

The above timings (see last conclusion) translate ap-
proximately into 1 hr for a hover solution (with 20 New-
ton iterations for tight convergence, see Ref [2]) and 20
minutes per time step (5◦) in forward flight (assuming
5 Newton iterations). It is clear that high fidelity 3-
D structures cannot be enabled or driven without High
Performance Computing, and without 3-D geometry and
grid tools. But it is also clear, based on the research doc-
umented here and its companion paper earlier [2], that
it is technologically within reach. Today, isolated ro-
tor RANS CFD calculations, alone, require 20–40 hrs on
128–64 processors for hover computations, and about 40
mins per 5◦ azimuth (assuming 0.25◦ time steps for sta-
bility) in forward flight. Therefore, given the resources,
there is little reason not to use 3-D structures for high fi-
delity analysis. But structures is fundamentally different
from fluids — in physics, in mathematics, in numerics,
and in the solutions sought. Mindful of these, we sug-
gest a list of future directions of research subdivided into
three categories.

1. Fundamental: Periodic dynamics – scalable domain
decomposition in space-time for direct extraction of
periodic dynamics.

2. Applied: Dual node based coarse problem augmen-
tation with 3-D partitioning. Large-scale eigensolu-
tion; 3-D to 3-D fluid-structure interface. Reduced
order aerodynamics and trim solution.

3. Applications: Integration of 3-D solid geometry and
grid tools; Analysis of production rotors with multi-
body hub components using design geometries and
properties, beginning with hover.
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